Was den Sonnenwind so gefährlich macht

Wenn der Sonnenwind ungehindert auf Himmelskörper trifft, pulverisiert er förmlich das planetare Gestein. Warum die Sonnenteilchen eine so zerstörerische Kraft besitzen, haben nun Wiener Physiker geklärt.

Von der Sonne strömen ständig geladene Teilchen - hauptsächlich Wasserstoff- und Helium-Ionen, aber auch schwerere Elemente bis zu Eisen - ins All, der sogenannte Sonnenwind. Werden sie nicht - wie im Fall der Erde - von einem Magnetfeld abgelenkt bzw. durch Kollisionen mit Teilchen aus der Atmosphäre gestört, treffen sie mit einer Geschwindigkeit von 400 bis 800 Kilometer pro Sekunde auf der Oberfläche von Himmelskörpern auf. Dabei schlagen sie laufend Atome aus den Gesteinen, die kilometerhoch aufsteigen und etwa auf dem Erd-Mond oder dem Merkur eine dünne Atmosphäre, „Exosphäre“ genannt, bilden.

Experiment mit „Mond-Analog-Gestein“

Durch die Erforschung dieser Exosphäre kann man auf die chemische Zusammensetzung der Oberflächen-Gesteine rückschließen. So soll die ESA-Sonde „BepiColombo“, deren Start am 19. Oktober geplant ist, durch die Analyse der Exosphäre des Merkur Informationen über die geologischen und chemischen Eigenschaften des kleinsten und sonnennächsten Planeten des Sonnensystems sammeln.

Künstlerische Darstellung: Sonnenwind trifft Planeten

NASA/GSFC

Der Sonnen wind ist extrem energiereich

Für solche Analysen ist es notwendig, die Auswirkungen des Sonnenwinds auf die Gesteine genau zu verstehen. Aus diesem Grund wurden an der Technischen Universität (TU) Wien Versuche durchgeführt. Die Forscher, die üblicherweise ähnliche Wechselwirkung zwischen Ionen und der Reaktorwand in Kernfusionsreaktoren untersuchen, verwendeten Wollastonit „als Merkur- bzw. Mond-Analog-Gestein“, so Friedrich Aumayr vom Institut für Angewandte Physik der TU Wien gegenüber der APA. Sie beschossen es mit verschiedenen Ionen, etwa Wasserstoff- oder einfach bzw. achtfach geladene Argon-Ionen, also Argon-Atomen, denen ein bzw. acht Elektronen fehlen.

Ladung verstärkt Sprengkraft

„Bisher ging man davon aus, dass in erster Linie die Bewegungsenergie der schnellen Teilchen dafür verantwortlich ist, dass die Gesteinsoberfläche atomar zerstäubt wird“, erklärte Erstautor Paul Szabo aus dem Team Aumayrs in einer Aussendung.

Die TU-Forscher wollten mit ihrer Arbeit allerdings zeigen, dass der Sonnenwind aus zwei Gründen zerstörerischer ist als man bisher geglaubt hat. „Erstens, weil schwerere Teilchen mehr von der Oberfläche abtragen als die leichten Wasserstoff-Protonen, und zweitens, weil sie das nicht nur aufgrund ihrer Masse tun, sondern auch, weil sie zusätzlich einen hohen Ladungszustand haben und dadurch eine andere Form der Energie in die Kollision miteinbringen“, so Aumayr.

Im Vergleich von einfach und achtfach geladenem Argon habe man die Rolle des Ladungszustands schön sehen können: „Die haben die selbe Aufprallgeschwindigkeit, aber bei achtfachem Ladungszustand wird deutlich mehr Wollastonit-Gestein zerstäubt“, sagte Aumayr. Es beeinflussen also nicht die Wasserstoff-Ionen, die 93 Prozent des Sonnenwinds ausmachen, am stärksten das Gestein, sondern vielmehr die Helium-Ionen: „Helium hat die vierfache Masse sowie die doppelte Ladung von Wasserstoff - und ist dadurch besonders wirksam“, so der Physiker.

Nächster Versuch mit echtem Mondgestein

Die Erkenntnisse sollen nun in die Modelle einfließen, mit denen aus der Exosphäre Informationen über die geologischen und chemischen Eigenschaften von Himmelskörpern gewonnen werden. Dazu wurde in der Arbeit auch mit dem Institut für Weltraumforschung IWF) der Österreichischen Akademie der Wissenschaften (ÖAW) kooperiert, das an „BepiColombo“ beteiligt ist. Die TU-Forscher werden weitere Versuche auch mit echtem Mondgestein durchführen, das sie von der Universität Bern erhalten.

science.ORF.at/APA

Mehr zu diesem Thema: