Schaltkreis eines Computers
Oliver Wolf – TU Graz
Oliver Wolf – TU Graz
Technologie

Höchstgeschwindigkeit für Computer ermittelt

Kleiner und schneller lautet seit Jahrzehnten das Motto in der Mikroelektronik. Bei der Miniaturisierung ist das Limit klar: Kleiner als ein Atom kann ein Schaltkreis nicht sein. Für das Tempo haben Forscher nun die Grenze für die Signalübertragung in Mikrochips identifiziert.

Bei einer Maximalgeschwindigkeit von einem Petahertz (eine Million Gigahertz) ist Schluss, schneller geht’s nicht, berichten das Forscherteam um Martin Schultze, Vorstand des Instituts für Experimentalphysik der Technischen Universität Graz, im Fachjournal „Nature Communications“.

100.000 Mal schneller als heutige Transistoren

Computerchips arbeiten mit immer kürzeren Signalen in immer kleineren Zeitabständen. So wie bei der Verkleinerung stößt man aber auch hier irgendwann an physikalische Grenzen: Die quantenmechanischen Prozesse, die in einem Halbleitermaterial die Entstehung von elektrischem Strom ermöglichen, brauchen ihre Zeit. Und die kann irgendwann nicht mehr unterschritten werden.

Diese Grenze konnte das Team, dem auch Fachleute der TU Wien, der Uni München und des Max Planck-Instituts für Quantenoptik in Garching angehörten, nun ausloten. Sie liegt bei einem Petahertz und ist damit etwa 100.000 Mal schneller, als es derzeitige Transistoren sind.

Schnell bedeutet für die Physik in diesem Fall „hochfrequent“: „Je schneller man werden will, desto hochfrequenter muss das elektromagnetische Signal sein – und irgendwann kommen wir so in den Bereich der Lichtfrequenz, die auch als elektromagnetisches Signal verwendet werden kann“, erklärte Schultze. So wird in der Optoelektronik Licht verwendet, um in einem Halbleiter die Elektronen anzuregen, damit er vom isolierten in den leitenden Zustand wechselt.

Messungen im Femtosekunden-Bereich

In ihrer Studie haben die Forscher mit sogenannten dielektrischen Materialien wie Gläser oder Keramiken gearbeitet. Sie benötigen im Vergleich zu Halbleitern viel mehr Energie, um angeregt zu werden. Und das erlaubt den Einsatz von Licht mit höherer Frequenz, was eine schnellere Datenübertragung ermöglicht. Weil aber dielektrische Materialien zerstört werden, wenn Strom durch sie fließt, mussten die Fachleute die Schaltfrequenz so kurz halten, dass das Material gar keine Zeit hat, um kaputt zu gehen.

Konkret beschossen sie Lithiumfluorid, ein Dielektrikum, mit einem ultrakurzen Laserpuls mit einer Frequenz im extremen Ultraviolett-Bereich. Dieser Laserpuls regt die Elektronen in der Probe an und sie können sich plötzlich frei bewegen – das Material wird kurzfristig zu einem elektrischen Leiter. Mit einem zweiten, etwas längeren Laserpuls werden die angeregten Elektronen dann in eine Richtung gesteuert – es fließt Strom, der detektiert werden kann. Das sind Vorgänge, die extrem schnell ablaufen, und zwar im Bereich von Atto- oder Femtosekunden (eine Attosekunde ist ein Milliardstel einer Milliardstel Sekunde, eine Femtosekunde der millionste Teil einer Milliardstel Sekunde).

Technische Grenze deutlich niedriger

Durch die in Garching und Graz durchgeführten Experimente sowie die theoretische Arbeit und Computersimulationen in Wien bekamen die Wissenschaftler Antworten auf die Fragen, wie schnell das Material auf den ultrakurzen Laserpuls reagierte, wie lange die Signalentstehung dauerte und wie lange man warten muss, bis das Material dem nächsten Signal ausgesetzt werden kann. „Daraus ergibt sich, dass bei etwa einem Petahertz eine Obergrenze für kontrollierte optoelektronische Prozesse liegt“, erklärte Mitautor Joachim Burgdörfer vom Institut für Theoretische Physik der TU Wien.

Wer deshalb auf ultraschnelle Gaming-PCs hofft, den müssen die Physiker enttäuschen: Die festgestellte Grenze bedeute nicht, dass Computerchips mit einer Taktfrequenz von knapp einem Petahertz hergestellt werden können, die realistische technische Obergrenze liege wohl noch deutlich darunter, betonen sie. Ob künftige Technologien das möglich machen, stehe in den Sternen.